Home > Outdoor Furniture >

Sand Casting Process Heat Resistant Cast Iron Furnace Charge Plate

Categories Heat Resistant Cast Steel
Brand Name: Non-Standard
Place of Origin: China
MOQ: 1 Ton
Price: quote according to different drawing technique requirements
Payment Terms: T/T, L/C
Supply Ability: 300 Tons every month
Delivery Time: within 60 days
Packaging Details: Plywood crate + VCI Anti-Rust Bag
Material: ASTM A297/A297M GradeHH
Process: Sand Casting Process
Machining: NONE
Surface: Anti-Rust Oil
Packing: Plywood crate + VCI Anti-Rust Bag
Heat Treatment: according to the requirement
  • Product Details
  • Company Profile

Sand Casting Process Heat Resistant Cast Iron Furnace Charge Plate

Sand Casting Process Heat Resistant Cast Iron Furnace Charge Plate


Product Description and Process

Heat Resistant Steel Castings ASTM A297 HH HK Alloy Steel Castings Furnace Charge Plate Manufacturer


Production process: green sand molding, lost wax investment casting process

Machining process: CNC machining

Surface treatment process: None


Product Material and Uses

Normally produce with ASTM A297/A297M GradeHD, GradeHF, GradeHH, GradeHK, GradeHP GradeHK-40, GradeHL, GradeHP, GradeHW, GradeHC, GradeHN, ZG30Cr26Ni5, ZG35Cr26Ni12, ZG30Ni35Cr15, ZG40Cr28Ni16, ZG35Ni24Cr18Si2, ZG40Cr25Ni20, ZG40Cr30Ni20, ZG45Ni35Cr26, ZG35Cr24Ni7SiN, ZG35Cr28Ni16, etc.


The heat resistant steel casting products are widely used for heat-engine plant industry, furnace for heat treatment, cast industry, steel industry, turbine components, aircraft industry, etc.



Heat Resistant Steels


The properties of steel and its yield strength considerably decrease as the steel absorbs heat when exposed to high temperatures. Heat resistance means that the steel is resistant to scaling at temperatures higher than 500 deg C. Heat resistant steels are meant for use at temperatures higher than 500 deg C since they have got good strength at this temperature and are particularly resistant to short and long term exposure to hot gases and combustion products at temperature higher than 500 deg C. These steels are solid solution strengthened alloy steels. As these steels are used over a certain broad temperature ranges, these steels are usually strengthened by hard mechanism of heat treatment, solid solution and precipitation. All the heat resistant steels are composed of several alloying elements for the purpose of achieving the desired properties and are used in applications where resistance to increased temperatures is critical.


The level of the heat resistance of the heat resistant steels depends on the environment conditions in which they operate and cannot be characterized by a single testing method. Maximum service temperatures which can be extended to 1150 deg C depending on the alloy content can be severely reduced by the presence of some compounds such as sulphurous compounds, water vapour or ash. Resistance to molten metal and slag is also limited in these steels.


In heat resistant steels, the two most important elements are chromium for oxidation resistance and nickel for strength and ductility. Other elements are added to improve these high temperature properties. The effect of various alloying elements is described below.

Chromium – Chromium is the one element which is present in all the heat resistant steels. Besides imparting oxidation resistance, chromium adds to high temperature strength and carburization resistance. Chromium is the element which makes the micro structure ferritic.

Nickel – Nickel when added to the heat resistant steels increases its ductility, high temperature strength and resistance to both carburizing and nitriding. Nickel tends to make the atomic structure austenitic. It decreases the solubility of both carbon and nitrogen in austenite.

Carbon – Carbon is the most important strengthening element. Carbon is controlled within certain limits in heat resistant steels. Most heat resistant steels contain 0.05 % to 0.10 % of carbon. Cast heat resistant steels have usually 0.35 % to 0.75 % of carbon. Carbon dissolves in alloy and induces solution strength. It is also present as small, hard particles called carbides which are chemical compounds of carbon with metallic elements such as chromium, molybdenum, titanium and niobium etc.

Nitrogen – Nitrogen is present in heat resistant steels in small amounts and serves to strengthen both martensitic and austenitic steels.

Silicon – Silicon decreases the solubility of carbon in the metal, which is an important variable in the steel making process. It is a strengthening element normally above 0.04 %. Silicon improves oxidation and carburization resistance, as well as resistance to absorbing nitrogen for heat resistant steels at high temperature.

Sulphur – It is regarded as impurity and is commonly specified as upper limit in the heat resistant steels. Sulphur is detrimental to weldability but it improves machinability.

Phosphorus – Phosphorus is usually an undesirable element in heat resistant steels since it has brittle effect when it segregates at the grain battery. It is also harmful to nickel alloy weldability. It is normally specified as upper limit for most of the heat resistant steels.

Other alloying elements – Other alloying elements used in the heat resistant steels are manganese, molybdenum, titanium, vanadium, tungsten, aluminum, cobalt, niobium, zirconium, copper, and the rare earth elements like boron, cerium, lanthanum and yttrium. These elements improve the steels integrative properties at elevated temperature. While some elements are used for strength others are used mostly for oxidation resistance, process workability and microstructure stability.


Generally there are two fundamental classes of heat resistant steels. These are given below:

Ferritic/martensitic heat resistant steels

These steels have the same body centered cubic crystal structure (Fig 1) as that of iron. These steels consist basically of iron with small percentage of alloying elements. The main alloying element is chromium with percentage ranging from 2 % to 13 %. These steels also contain small percentages of carbon, silicon, manganese, molybdenum, aluminum and nitrogen. These elements help in precipitation hardening which supports the high temperature behaviour of the steel. Ferritic steels have transformation free ferritic structure. These steels display relatively low toughness under impact loading. Above 900 deg C these steels suffer grain coarsening combined with embrittlement. Ferritic steels are difficult to form and hence should only be welded by arc welding. The steels are insensitive to sulphurous gases. Ferritic grades are more popular heat resistance steels since they are economical because of lower alloying elements in them. These are also called low alloy heat resistant steels. Besides chromium, some of the alloying elements present in the ferritic grades are molybdenum, tungsten, niobium, vanadium, boron and titanium etc. The oxidation resistance of these steels at red hot conditions is in direct proportion to the chromium content of the steel. Ferritic/martensitic steels used for high temperature service can be classified into two categories based on the content of alloying elements and the microstructures. The first category of these steels are called low alloy steels having 1 % to 3 % chromium in them and with total alloying elements of less than 5 %. The second category of these steels is martensitic heat resistant steels. These steels include medium chrome steels with a chromium content of 5 % to 9 % and high chrome steels with a chromium content of 9% to 12 %. The total alloying elements in these steels ranges from 10 % to 20 %. High chrome steels have better creep strength.

Austenitic heat resistant steels

When sufficient nickel (more than 8 %) is added to the iron chromium steels, the steel structure becomes transformation free austenitic structure which has a face centered cubic crystal structure (Fig 1). Austenitic steels have higher strength, ductility and creep rupture strength than the ferritic/martensitic steels. Their high toughness makes them insensitive to impact loads and abrupt temperature changes. Austenitic steels are not prone to the grain coarsening at high temperatures. These steels have higher elevated temperature strength as well as creep strength than ferritic steels. At room temperature the austenitic steels are more ductile, display good formability and generally easier to fabricate. These steels are sensitive to sulphurous gases. Machining of these steels is more difficult as compared to ferritic steels. Austenitic steels are more expensive because of their higher alloy content.

Some important points related to heat resistant steel

Selection of heat resistant steel for a particular application is based on the level of the heat resistance required and the needed mechanical properties from the steel. The use of a higher alloyed and hence more heat resistant may be disadvantageous because of embrittlement besides having a higher cost. Heat resistant steel must not be exposed to flame and a direct contact with carbon must be avoided to prevent the lowering of heat resistance due to carburization.


Heat resistant steels are used in industrial furnaces, steam boilers, steam tubes, recuperators, chemical and petroleum industries, gas and fuel lines, fire boxes, heaters, resistors, heat exchangers and waste incineration plants etc.


Properties and Applications of high temperature alloys:


ASTM A297 (HC - UNS S92605)

Has a good amount of Chromium for good oxidation resistance at temperatures up to 2000 F (1093 C). Low nickel content to maintain greater resistance to sulphur bearing environments at 2000 F (1093 C).

Applications:

Cement, Glass, Heat Treating, Industrial Furnace, Oil Refining, Ore Processing, Paper, Power | Zinc Refining |Boiler baffles | Electrodes | Furnace Grate Bars | Gas Outlet Dampers | Kiln Parts | Lute Rings | Rabble Blades and Holders | Recuperators | Salt Pots | Soot Blower Tubes | Support Skids | Tuyeres | Excellent for operational environments involving combustion gases, flue gases, high sulfur, and molten neutral salts | Grate Bars | Molten Salt Pots | Furnace Skids | Injector Tubes | Slag Tapping Blocks | Carbon Disulphide Reformer Coils


ASTM A297 (HD- UNS J93005) / ASTM A608 (HD50 - UNS J93015 )

Austenitic with some ferrite (weakly magnetic and cannot be hardened much ).

Applications:

Load-bearing operations where temperatures don't exceed 1200 F (649 C)| Light load-bearing operations with temperature max 1900 F (1040 C) | Surfur resistance | Oxidation Resistance | Good Weldability | Centrifugal Castings | Brazing Furnace Components for the copper, glass, heat treating, oil refining, ore processing industries |Cracking Equipment | Furnace Blowers | Pouring Spouts | Gas Burner Parts | Holding Pots | Cement Kiln Ends | Roaster furnace rabble arms and blades |recuperater sections | Handling of Combustion and Flue Gases | Handling of High Sulfur Atmospheres | Handling of Copper Alloys and Molten Copper | Rotary Kiln Ring Entrance


ASTM A297 - J93303 (HH) / ASTM A447 - J93503 (HH I and HH II) / ASTM A608 (HH30 - UNS J93513 / HH33 - UNS J93633)

Good Strength / oxidation resistance at 1400 - 1800 F (760-982 C ) maximum operating temperature 2000 F (1093 C).

Applications:

Rabble arms and blades | grate bars | cement kiln cooling chain and shackles | tuyeres | furnace burner nozzles | radiant heater tubes and fittings | tube supports and hangers | tube sheets | heat treatment furnace hardware | furnace retorts and muffles | inderizing sidewalls |Annealing trays | billet skids | burner nozzles | carburizing boxes | convection tube supports | dampers, exhaust manifolds | flue gases stacks | grate supports | hardening trays | kiln nose ring segments | normalizing discs | pier caps | quenching trays | radiant tubes and supports | refractory supports | retorts | roller hearths and rails | stoker parts | tube hangers | Elbows


ASTM A297 (HK) / A351 (HK30 and HK40) / A567 (HK40 and HK50 - 1987 Discontinued Specifications) / A608 (HK30 and HK40)

The HK alloy steel has been the industry standard for 40 plus years due to its moderately high temperature strength, resistance to hot gas and sulfur-bearing hot gas corrosions, oxidation resistance, high creep and rupture strengths, and carburization resistance. Often used in structiral applications up to 2100 F (1150 C).Often used in as cast condition; it has good machinability and very weldable without the required preheat or post heat.

HK30 and HK 40 are often used for pressure-containing parts used in environments with elevated temperature and corrosive service (in reference of ASTM A351) and centrifugally cast parts ( ASTM A608)


Applications:

Furnace Tubes and Calcining| Ammonia, Molten Neutral Salts, Methanol and Hydrogen Reformers | Ethylene Pyrolysis Coils and Fittings | Steam Super-heater Tubes and Fittings | Tube Supports and Hangers | Tube Sheets | Heat Treatment Fixtures and Trays | Refractory Supports | Furnace Skids | Furnace Rolls | Rabble Arms |Steam Hydrocarbon Reformer | Elbows


Heat-Resistant Alloy Castings

The heat-resistant casting alloys are those compositions that contain at least 12% chromium which are capable of performing satisfactorily when used at temperatures above 1200 0F. As a group, heat-resistant compositions are higher in alloy content than the corrosion-resistant types. The heat-resistant alloys are composed principally of nickel, chromium, and iron together with small percentages of other elements. Nickel and chromium contribute to the superior heat resistance of these materials. Castings made of these alloys must meet two basic requirements:

1 Good surface film stability(oxidation and corrosion resistance) in various atmospheres and at the temperature to which they are subjected.

2 Sufficient mechanical strength and ductility to meet high temperature service conditions.


Heat-resistant alloys grade and chemical compositions-Iron base alloys


Alloy Casting Institute DesignationAlloy TypeASTMAISIUNSChemical Composition %
NiCrC

Mn

max

Si

max

Mo

max

Other
HA8-10CrA217---8-100.2max

0.35-

0.65

1

0.9-

1.2

Fe bal
HC28CrA297446J926054max26-300.5max120.5Fe bal
HD28Cr-6NiA297327J930054-726-300.5max1.520.5Fe bal
HE28Cr-9NiA297312J934038-1126-300.2-0.5220.5Fe bal
HF19Cr-9NiA297302BJ926039-1219-230.2-0.4220.5Fe bal
HH25Cr-12Ni

A297

A447

309J9350311-1424-280.2-0.5220.5Fe bal
HI28Cr-15NiA297-J9400314-1826-300.2-0.5220.5Fe bal
HK25Cr-20Ni

A297

A351

A567

310J9422418-2224-280.2-0.6220.5Fe bal
IN-519’24Cr-24Ni---23-2523-250.25-0.3511-

Cb1.4-1.8

Fe bal

HL30Cr-20NiA297-J9460418-2228-320.2-0.6220.5Fe bal
HN25Ni-20CrA297-J9421323-2719-230.2-0.5220.5Fe bal
HP35Ni-26CrA297-J9570533-3724-280.35-0.75220.5Fe bal
HP-50WZ35Ni-26Cr---33-3724-280.45-0.5522.5-

W 4-6

Zr0.1-1.0

Fe bal

HT35Ni-17Cr

A297

A351

330J9460533-3715-190.35-0.7522.50.5Fe bal
HU39Ni-18CrA297-J9540537-4117-210.35-0.7522.50.5Fe bal
HW60Ni-12CrA297--58-6210-140.35-0.7522.50.5Fe bal
HX66Ni-17CrA297--64-6815-190.35-0.7522.50.5Fe bal
Chromium
Nickel50Cr-50NiA560--bal48-520.1max0.31-Fe1.0max
IN-657’50Cr-48Ni---bal48-520.1max0.30.5-

Cb1.4-1.7

N0.16max

Fe1.0max


Heat Resistant Steel Casting Materials

MaterialDelivery Specification

ASTM

A297

Delivery Condition

Technological Properties

At room temperature

Max.

operation temperature

(0c)

JunkerDIN No.

Rp0.2

(N/mm2)

Rm

(N/mm2)

A5 %
F1002S1.4743DIN EN10295-Not/with annealed---900
AF11011.4823DIN EN10295

HD

UNS J93005

Not/with annealed≥250≥550≥31100
A10501.4825DIN EN10295

HF

UNS J92603

Not/with annealed≥230≥450≥15900
A1201
Quality Sand Casting Process Heat Resistant Cast Iron Furnace Charge Plate for sale
Send your message to this supplier
 
From:
Enter your email please.
To: ZHENGZHOU YU-LONG MACHINERY EQUIPMENT CO.,LTD
Subject:
Message:
Characters Remaining: (0/3000)
 
Inquiry Cart 0
  • Haven't found right suppliers
  • Our buyer assistants can help you find the most suitable, 100% reliable suppliers from China.
  • And this service is free of charge.
  • we have buyer assistants who speak English, French, Spanish......and we are ready to help you anytime!
  • Submit Buying Request
    More from this Supplier
    Contact Us Quickly